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Abstract—A numerical algorithm is presented to study the initial 
period of crack growth in a viscoelastic composite under the mixed-
mode loading. Viscoelastic properties of the composite are described 
using linear viscoelasticity operators with Yu. N. Rabotnov’s kernel. 
An example of calculation is given for a composite with viscoelastic 
components. 
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I. INTRODUCTION 
EINFORCED composite materials and multiphase 

polymer systems have been a subject of growing interest 
as they become widely used in constructions. These materials 
can modernize the present-day civil infrastructure because of 
their strength, resistance to the influence of the environment, 
and efficiency from the viewpoint of cost; they are used for 
increasing the strength as compared with homogeneous 
polymer materials. It is important for structural design to 
develop efficient methods for the prediction and modeling of 
such material behavior using principles of the mechanics of 
composite materials. Many properties and characteristics of a 
material can be changed by appropriately choosing the 
substances of its components and the values of their volume 
fractions. In numerous structural materials, the viscoelastic 
nature of their mechanical behavior is very important, and, 
therefore, this requires knowing their long-term properties. 
These properties are crucial to investigate delayed fracture of 
structural elements and determine their durability.  

The parameters of long-term deformation of viscoelastic 
composites can be effectively determined using the methods 
of the mechanics of composite materials and the linear theory 
of viscoelasticity, proceeding from experimental data on the 
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long-term deformation of the materials of components of a 
composite. This approach for investigating the long-term 
deformation of composites makes it possible to model their 
mechanical properties quite exactly on the basis of known 
properties of the materials of components, the volume content 
of these components, and the type of reinforcement, without 
manufacturing the composite itself. Micromechanical methods 
for predicting the effective characteristics of an elastic 
composite based on the properties of the materials of 
components and their volume fraction have been developed 
fairly successfully up to now. It was found that the method of 
empirical describing of these characteristics using fractional 
calculus very effective from the theoretical and engineering 
points of view [1]. 

The wide application of this method in the modern theory 
of viscoelasticity cannot be even imagined without Yu. N. 
Rabotnov’s theory [2, 3] of Volterra integral operators with 
weakly singular kernels that could be interpreted in terms of 
fractional integrals and derivatives. 

A combined use of the integral operators of viscoelasticity 
with Rabotnov’s kernel to describe viscoelastic properties of 
composite and the concepts of nonlinear fracture mechanics 
allows us to obtain an effective solution of several problems in 
the fracture mechanics of composites [4]–[9]. 

Modern fracture mechanics uses energy, stress and 
deformation criteria to describe the process of fracture for 
materials of different types. The deformation criteria can be 
effective for the elasto-plastic materials with considerable 
plastic zones near the crack front. The stress criterion based 
on SIF can give an inappropriate precision when used for such 
materials. Furthermore, deformation criterion, namely the 
COD-criterion, is widely used to study the subcritical growth 
of the cracks in viscoelastic materials. This criterion allows 
one to obtain kinetic equations of slow crack growth in 
viscoelastic media (see survey [6]). 

In the present work, we investigate an initial period of a 
crack in linearly viscoelastic reinforced composite under 
mixed-mode loading. The deformable properties of the 
composite as a whole are described as a sum of Rabotnov’s 
operators. 

The initial period of mixed-mode crack growth 
in viscoelastic composite with Rabotnov’s 

relaxation law 
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II. ON A REPRESENTATION OF OPERATOR INTEGRAL 
FUNCTION 

A. An Operator Function Representation for the Same 
Values of Fractional Order Exponent 

As it can be seen from the literature on the linear 
viscoelasticity, there are two major approaches to solve the 
problems of stress-strain determination in bodies made of 
viscoelastic composites [10]. These are the method based on 
finding the corresponding stresses or strains as original 
functions corresponding to their transforms obtained by a 
Laplace–Carson-type transformation [11], and the method 
based on the Volterra principle [3]. Investigations of the 
rheological properties of viscoelastic composites by the first 
of the methods are performed mainly in the domain of 
transforms, and the inverse transform to the domain of 
original functions is seldom carried out and is done 
predominantly with numerous restrictions and simplifications 
and preassigned accuracy. There are two ways of transforming 
from the domain of transforms to the time domain. The first 
does not impose restrictions on the influence function, and the 
transformation to the time domain is performed by 
approximate methods, which depend substantially on the 
behavior of the influence function for the materials of 
components. Another way is to find the solution and its 
parameters in the transformed domain in a preassigned form, 
which enables a relatively simple inverse transform to the 
solution in the time domain. Construction of the solution in 
such a way is possible when the viscoelastic properties are 
described within the framework of the standard mechanical 
model, where the influence function is a linear combination of 
decreasing exponents (Prony–Dirichlet series), or according to 
the generalized fractional derivative model, where the 
influence function is a linear combination of the Mittag-
Leffler functions  [10]. Here, the deformable properties of 
components are described within the framework of the 
standard mechanical model.  

Both physical and mathematical requirements to modeling 
the material rheological properties within the framework of 
the linear theory of viscoelasticity make the correct 
description of these properties to be an uneasy task. However, 
it is practically impossible to satisfy all these requirements, 
and, hence, each of the models presented in the literature has 
both advantages and shortcomings and is applied in 
accordance with the problem to be solved. An important 
advantage of the description of viscoelastic properties of the 
components of a composite within the framework of the 
standard mechanical model is its universality: this model 
describes fairly exactly the time variation of the properties of 
numerous linearly viscoelastic materials. From the 
mathematical viewpoint, this accuracy is reached by 
increasing the number of terms of the Prony series, i.e., the 
number of rheological parameters. However, as a result, the 
influence functions lose their smoothness, which is not 
natural. To remove this shortcoming, one can seek the 
influence function not as a linear combination of exponents 

but as a linear combination of the Mittag-Leffler functions, 
which describes the process of deformation with the use of a 
smaller number of terms. Naturally, such a description 
complicates the engineering application of the results 
obtained, but the number of rheological parameters of the 
material under investigation becomes less. This is 
advantageous also in view of the considerations given in what 
follows.  

Based on the characteristics of deformation of a composite, 
one can solve the problems of determining the stress-strain 
state near stress concentrators (cracks, holes) located in the 
body of a composite material. Stresses or displacements in the 
neighborhood of cracks can be determined from the elastic 
solution, where elastic constants are replaced with the 
operators of linear viscoelasticity. 

All investigations in the field of the linear theory of 
viscoelasticity are based on the constitutive relation in the 
form of a heredity integral or a convolution integral, first 
obtained by Boltzmann 

    ( )
t

t C t d   


  , (1) 

where the convolution kernel  C t  is a function of relaxation. 
The functions of stresses ( )t  and strains ( )t  are time 
functions of the class of Heaviside functions. 

As it was proposed by Yu. N. Rabotnov [2], the relaxation 
function can be found as 
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is the Mittag-Leffler function of order   ( 0 1  ) and   
is the Euler gamma function 

The quantity  0 0( )E C  in (1) is the instantaneous 
modulus of elasticity, and the functional characteristics of the 
relaxation rate 0( ) ( ) /T t C t E   is a relaxation kernel or 
influence function (the function of relaxation rate) [3]. In the 
case when the creep function is represented in the form (1) as 
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the influence function is    ,
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is the Rabotnov fractional exponential function, and   is its 
fractional order exponent. For 0 1  , the Mittag-Leffler 
function is often erroneously called as the exponent of 
fractional order [1]. However, (1) unlike to the Rabotnov 
fractional exponential function, which is a weakly singular 
function at 0t  , the Mittag-Leffler function is regular 
everywhere, and (2) if the Rabotnov function is used as 
relaxation kernels, then resolvent kernels coincide. Only one 
more function possesses this unique feature, namely: 
conventional exponent. 

Then the relaxation function is 

0 11( ) ( , )
t n

k kk
C t E R t d   



       , (3) 

or written in operator form 

0 11 ( )
n

k kk
C E R  


   
  . (4) 

The result of the operator R  application to a function of 
the strain can be written as 

( ) ( ) ( ) ( ) ( )
t

R t R t t R t d     


     , 

where ( )R t  is the kernel of the operator R . 
Then it is possible to use the resolvent operator algebra and 

operator continued fractions to obtain any viscoelastic 
solution via the correspondence principle [11], or Volterra’s 
principle (in the case of operator solution). One is referred to 
[12] for the details. 

The only obstacle in application of this method to study 
deformation of composite materials is that all operators should 
have the same value of the fractional order exponent. 
However, this could be passed using an approximation 
described below. 

B. Adjustment of Rabotnov’s Operators to a Common 
Fractional Order Exponents 
Using the operator form of the relaxation function (4), it is 

possible to write the relaxation functions for the composite 
components as 

0
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Further, it is possible to use the Rabotnov operator 
representation [3]  
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where I
  is the Abel operator with the kernel 

( )
( )

t
I t



 






1
 

and ( ) is the Euler gamma function.  
We represent the solution of the problem of linear 

viscoelasticity in the operator domain as a function of the 
Abel operator  
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to the function ( )F x . Then it is possible to interpret the 
function F

  from (6) as an operator continued fraction (OCF)  
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is the n-th approximant of (6). This approximant can be 
obtained for ix x 0 0  by equivalent transformations of 
the fraction [13]  
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n




1  approximateF
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Further we use the following notation for a fragment of 
OCF (8):  
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Using the algebra of resolvent operators, a fragment of 
OCF n

m
  defined by (9) could be represented in the form 

[14] 
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 – for a fragment with an even number of terms 
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Thus, it is possible to represent the approximation of the 
operator function with the help of the n-th convergent as  
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The order of the convergent necessary for the 
approximation of the operator function can be chosen 
depending on the accuracy of determining the function 1F   . 

An important point in determining the parameters of a 
fractional exponential function is the optimal choice of its 
parameter  . This parameter characterizes the creep or 
relaxation rate on a time interval where it differs substantially 
from zero. From the geometrical viewpoint, it is the slope of 
the inclined part of the creep or relaxation curve in 
logarithmic coordinates.  

Even in a problem for the composite consisting of several 
components having viscoelastic properties we could construct 
a series of fractional exponential functions that describes the 
deformation of other components [15]. Thus, the solutions of 
the boundary problems of linear viscoelasticity and fracture 
mechanics can be constructed with the use of only one base 
operator, responsible for the time variation of the stress-strain 
state. 

III. CALCULATION OF THE INITIAL PERIOD DURATION FOR A 
MIXED-MODE CRACK IN A VISCOELASTIC COMPOSITE 

A. Viscoelastic properties of the composite under 
consideration 
Consider a viscoelastic laminate which can be represented 

as an orthotropic material after homogenization. Then the 

generalized Hooke's law for the principal directions can be 
written as 
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22 221 /a E , and 66 121/a G  . 
To determine the effective viscoelastic moduli of the 

composite ( 11E , 22E , 12G , and 21 ), the experimental data for 
the material relaxation can be used, as well as the 
characteristics obtained from the results using homogenization 
theory for the composite materials of a known structure. 

Technical constants are found using [16] as functions of 
shear moduli 
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= 2 /
n

n , and n  is a number that determines the type of 
fibers packing (e.g., 4n   corresponds to tetragonal 
packing). 

Experimental data for components were taken from [17] 
and adopted to the proposed approach. For the sake of 
simplicity, it was assumed that is is enough to keep one term 
in (3) ( 1n  ). Reinforcement has the following 
characteristics: 
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where K  is the bulk modulus, and G  is the shear modulus. 
Subscripts “0” and “  ” denote the instantaneous and long-
term values, correspondently. 

Matrix characteristics are as follows: 
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B. Crack modelling and the results 
Consider a crack in a viscoelastic orthotropic composite. To 

take non-linear deformation at the crack tips into account, we 
use the Dugdate model [12, 18] with the following cohesive 
law at the process zones (Fig. 1): 
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where 1   and 1   are some limiting values of stresses, 
I
  

and 
II
   are crack opening in the direction of the 

corresponding axis, and *
I
  and *

II
  are the critical values of 

the opening. 
 

 
 

Fig.1 Cohesive law at the process zone 
 

Stresses in the right process zone can be found as linear 
functions of the coordinate t as 
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and symmetrically for the left zone. 
Consider the case when the composite reinforcement 

direction coincides with the normal to the crack line direction. 
From the solution of an elastic problem, one can find that 
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    Until the opening displacement at the crack tip reaches its 
critical value, the problem parameters 0 , 0 , 1 , and d  can 
be determined from a system of four equations 
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where the last two equations are the conditions of the stress 
finiteness at =x d , and  
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As the opening at the crack tips reaches its critical value, 

0  and 0  vanishes to zero, and (12) becomes 
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From the last equation of (12) one can determine d . Then 
the first and the second equations can be used in a 
combination with an experimental dependency I II( , ) 0F    . 
For our example, this dependency can be taken as follows: 
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 This allows us to determine the duration of initiation period 
of the crack growth. This duration 0t  should satisfy the 
following equation: 
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For our example in Fig. 2, the following parameters are 
used: external loading 4

y
   MPa, 1,

xy
  1.5, and 2 MPa 

(for curves 1, 2 and 3, respectively), 1 35  MPa, and 
53 10

e
   m. 

 
 

 
 

Fig. 2 Crack initiation period duration vs. crack half-length for the 
different values of 

xy
   

IV. CONCLUSION 
The proposed algorithm can be used to study a wide range 

of the fracture mechanics problems for linear viscoelastic 
materials. Its major advantages are the use of well-defined 
algebra of resolvent operators and the possibility of 
application to various problems when the crack opening can 
be determined from an elastic solution by the correspondence 
principle. 
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